Matrix, Mesenchyme, and Mechanotransduction
نویسندگان
چکیده
منابع مشابه
Integrins and extracellular matrix in mechanotransduction.
Integrins bind extracellular matrix fibrils and associate with intracellular actin filaments through a variety of cytoskeletal linker proteins to mechanically connect intracellular and extracellular structures. Each component of the linkage from the cytoskeleton through the integrin-mediated adhesions to the extracellular matrix therefore transmits forces that may derive from both intracellular...
متن کاملMechanotransduction at cell-matrix and cell-cell contacts.
Mechanical forces play an important role in the organization, growth, maturation, and function of living tissues. At the cellular level, many of the biological responses to external forces originate at two types of specialized microscale structures: focal adhesions that link cells to their surrounding extracellular matrix and adherens junctions that link adjacent cells. Transmission of forces f...
متن کاملExtracellular matrix, mechanotransduction and structural hierarchies in heart tissue engineering.
The spatial and temporal scales of cardiac organogenesis and pathogenesis make engineering of artificial heart tissue a daunting challenge. The temporal scales range from nanosecond conformational changes responsible for ion channel opening to fibrillation which occurs over seconds and can lead to death. Spatial scales range from nanometre pore sizes in membrane channels and gap junctions to th...
متن کاملUnderstanding Sensory Nerve Mechanotransduction through Localized Elastomeric Matrix Control
BACKGROUND While neural systems are known to respond to chemical and electrical stimulation, the effect of mechanics on these highly sensitive cells is still not well understood. The ability to examine the effects of mechanics on these cells is limited by existing approaches, although their overall response is intimately tied to cell-matrix interactions. Here, we offer a novel method, which we ...
متن کاملThe Extracellular Matrix Contributes to Mechanotransduction in Uterine Fibroids
The role of the extracellular matrix (ECM) and mechanotransduction as an important signaling factor in the human uterus is just beginning to be appreciated. The ECM is not only the substance that surrounds cells, but ECM stiffness will either compress cells or stretch them resulting in signals converted into chemical changes within the cell, depending on the amount of collagen, cross-linking, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of the American Thoracic Society
سال: 2015
ISSN: 2329-6933,2325-6621
DOI: 10.1513/annalsats.201407-320mg